Chemistry 7940
Quantum Mechanics II
Spring 2013

Course topics

LAST REVISED: January 15, 2013

1. Density matrix
 - Pure vs mixed states. Ensemble interpretation.
 - Reduced density matrices.
 - Correlation & entanglement. Bell’s theorem.
 - Equations of motion. Analogy with classical mechanics.
 - Relaxation and decoherence.
 - Generalized measurements, quantum information theory, and all that.

2. Time-dependent phenomena
 - Evolution operator. Propagators and Green’s functions.
 - Three pictures: Schrödinger, Heisenberg, interaction.
 - Sudden approximation.
 - Adiabatic approximation. Geometric phases.
 - Perturbation theory for the density operator. Linear response.

3. Path integral formulation of quantum mechanics (brief)
 - Derivation of the sum-over-paths expression for the propagator.
 - Semiclassical limit of the path integral.
 - Path integral formulation of quantum statistical mechanics: polymer beads, and all that.

4. Molecule-field interactions
 - Brief review: Maxwell’s equations, scalar and vector potentials, gauge transformations, free field, and all that.
 - Derivation of Hamiltonian for charged particle in field.
 - Perturbation in dipole approximation.
 - Electric quadrupole and magnetic dipole transitions.
 - High-order perturbation theory and multiphoton processes.
 - Nonlinear spectroscopy.
 - Electric and magnetic properties of molecules (brief).
 - Quantizing the EM field. Photons. Spontaneous emission revisited.
5. Quantum mechanics of the continuum: Scattering theory
 - Particle flux and scattering cross sections.
 - Green’s functions and the scattering problem.
 - Born approximation.
 - Partial wave analysis of wavefunction for central scattering potential.
 - Phase shifts and the differential cross section.

If we have time:

6. Group theory in quantum mechanics
 - Fundamentals (briefly): groups; classes; cosets; representations; irreps; Schur’s lemma.
 - Great Orthogonality Theorem.
 - Characters; character tables.
 - Representation theory and QM. Symmetry and degeneracy.
 - Projection operators.
 - Rotation group: spherical tensors; Wigner-Eckart theorem.

7. Introduction to molecular spectroscopy
 - Born-Oppenheimer approximation.
 - Rotation-vibration separability.
 - Normal modes.