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The adiabatic approlrbnation is applied to determine the quantum states of coupled oscillators described by ageneralized 
H&on-Heiles hamiltonian. Comparison with exact quantum and other results show that numerically calculated adiabatic 
energy levels are accurate even for excited states. 

l_ Introduction 

There is considerable current interest in the proper- 
ties of quantum states of systems of coupled oscilla- 
tors,particularly with regard to the classical-quan- 
tum correspondence and possible manifestations of 
the onset of classical chaos in quantum level spectra 
and dynamics (see, for example refs. [ 121) These 
fundamental questions have immediate relevance to 
theoriesofintramolecularenergy flow andunimolec- 
ular reactions [ 123 _ 

Semiclassical and exact quantal methods have been 
extensively applied to determine energy levels for 
coupled oscillator systems of moderate dimensionality 
(see, for example, refs. [3-6] and other references 
cited in ref. [ 11). However, there remains a need for 
tractable ,approximate quantum methods that provide 
computationally cheap yet reasonably accurate eigen- 
values and, most importantly, appwxinzare quantum 
numbers or constants of the motion to classify the 
quantum states. 

The selfconsistent field (SCF) approach [7 $1, 
based on the Hartree approximation to the multi- 
mode wavefunction, is a useful method of this type. 
Errors inherent in the SCF approximation can in prin- 
ciple be corrected to arbitrary accuracy by allowing 
state interaction [9], and the method is suitable for 
systems with a large number of oscillators [lo]. 

In this letter we describe a numerical implementa- 
tion of the adiabatic approximation (AA) to calculate 
the quantum states of two coupled oscillators describ- 

ed by a generalized H&on-Heiles (GHH) hamilto- 
man. The fundamental idea is to solve for motion in 
one coordinate ,x say (taken to be the degree of free- 
dom with highest zero&order frequency), at fved 
values of the other coordinate y_ This generates a set 
of adiabatic channel potentials for motion along y; 
the AA consists of ignoring coupling between differ- 
ent channels_ The AA is familiar as a means of sepa- 
rating electronic and nuclear motions [ 1 l] _ It is also 
central to the application of hyperspherical coordi- 
nates to describe doublyexcited states of twoelec- 
tron atoms [ 121, collinear reaction dynamics [13--161. 
and bound states of molecules [ 17-20]_ In all these 
cases the adiabatic channel quantum numbers are use- 
ful approximate constants of the motion for charac- 
terizing the quantum states. We fmd that a similar re- 
sult holds for the coupled oscillator systems treated 
below. 

A perturbative approach to the AA has recently 
been applied by Linet al. 1211 to calculate eigenvalues 
and wavefunctions for coupled oscillators_ As we 
show below (see tables 1 and 2), energy levels obtained 
using perturbation theory can differ quite markedly 
from those obtained with a numerical approach,par- 
titularly for excited states and/or large values of the 
coupling constants_ Our converged numerical results 
demonstrate the remarkable accuracy of the AA in 
the cases rreated, even for excited states (cf. also the 
calculations of Christoffel and Bowman [22] on the 
coupled double-well oscillator). 

Shapiro and Child [23] have applied the AA to 
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classify the exact quantum states of a modified 
Henon-Ileiles oscillator coupled via a doorway chan- 
nel to a dissociative channel. However, their results 

for the HCnon-Helles system with egzral frequencies 
(fig:. 7 of ref. [23]) show that the AA does not accu- 
rately describe splittings of near degenerate sets of 
levels. as expected on general grounds. 

2. Method 

Consider the GHH hamiltonian 

H = /IO(X) + 120(r) + X(Wl -I- 7+) . (1) 

where hu is a harmonic oscillator hamiltonian in the x 

or_r coordinate. Zerothorder frequencies are wx and 
w, , with o, > w,. throughout_ For furedY_ we ob- 
tain an effective x hamiltonian: 

11 (_I- :_y) = I+$-) + +-’ . (2) 

Adiabatic channel functions \k,(x:y) and correspond- 
ing channel energies @Jo) are defined by the eigen- 
value equation 

h(x,y) *“(x;J*) = eJ_t*) \k,(x;y) _ (3) 

AA w~vefunctions 

*~j(~,>‘) = Q~jti)‘k*~C~-V) - (9 

and energies EVi are then determined by solving 

[11O(I’) + Xr)_IF3 + EVQ)J Qvi(I’) = E;rQ,iO,) * (5) 

for each channel Y in a basis ofyoscillator functions. 
The HEG procedure [24] is used to integrate the 

ch,ulnel potentials $ c$$ + Xqv3 + E,(V)_ Thus: 

(i) The)?-coordinate matrix is diagonalized in a 

basis of~wscillator functions to generate a set ofs- 

position eigenvalues and eigenfunctions. When X < 0, 
the GHH has no true bound states. only resonances. 
The>?-basis should not be too large in this care, other- 
wise spurious collapse of eigenvalues will occur in 
step (iii) below. A basis of IO-30~ functions is typi- 
cally used, depending on the value of h. 

(ii) Eq. (3) is solved at fved values ofy equal to 
the eigenvalues from step (i). The resulting values of 
the channel energies e,,(y) together with the transfor- 
mation to they-position representation from step (i) 
enable the channel potential matrices to be construct- 
ed in the originaly basis. The eigenvalue eq_ (3) can 
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be solved in two ways. First, we can use the exact re- 
sult E,(V) = fiw,O,) (ZJ + i), where the effective x fre- 
quency 

o&) = (0-Z + 2k#72 - (6) 

Second, the operator h (x;y) can be diagonalized in a 
basis of 25--3Oxoscillator states with fared frequency 
wx _ nr even only or odd only by symmetry_ This 
latter approach allows the method to be extended to 
treat potentials more complicated than GHH. Both 
approaches give results identical to at least six signifi- 
cant figures for the GHH potentials studied here. 

(iii) The resulting adiabatic channel matrices are 
diagonalized to obtain eigenvalues in the AA. The re- 
sultsof thisnumerical procedureare given in section 3. 

We have also calculated the socalled diagonal non- 
adiabatic corrections to the channel potentials: 

Ae,o’)= <~~(x;~)l-~d2/dyZI~~(x;y)), _ (7) 

The non-adiabatic corrections AE,~) were calculated 
bothexactly,by differentiation of harmonic oscillator 
eigenfunctions having frequency o,b), and numeri- 
tally , using a three-point fmitedifference method. 
Both approachesgive identical (6-7 significant figures) 
results for the corrected AA eigenvalues, which are 

also given in section 3. The effects of interchannel 
non-adiabatic coupling have not been calculated_ 

The eigenvalue calculations described here take a 

small amount of CPU time on a PRIME 850 minicom- 
puter_ In numerical form, the method for determining 
channel eigenvalues isquite general, and can be applied 
to other bound state problems treated in the AA. 

3. Results 

Table 1 compares our results for the lowest few 
eigenvalues with those obtained in previous test cal- 
culations using various combinations of potential 
parameters_ In addition to our uncorrected (AA) and 
diagonally corrected (CA) adiabatic energies, we give 
the harmonic oscillator (HO), exact quantum (EQ) 
[4], semiclassical (SC) [S] , self-consistent field (SCF) 
[7] and perturbative diagonally corrected adiabatic 
(PCA) eigenvalues [2 11. 

There are several points to note. As shown by 
Epstein [25], the uncorrected AA energy for the 
ground state is a lower bound to the true energy. By 
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Table 1 
Comparison ofeigenvahres for GHH hamiltonian: harmonic oscillator (HO);exact quantum (EQ); adiabatic approximation (AA); 
diagonally corrected adiabatic approximation (CA); semiclassical (SC); self-consistent field (SCF); perturbation theory diasonallY 

corrected adiabatic (PCA). Case (A): & = 2.12581, wi = 0.29375, x = -0.1116, n = 0.08414; (B): -.?_ = l-96, w$ = 0.36, X= 

-O.1,~=O.1;(C);~~=1.69,~JZt=0.49,h=-O.1,~=0.1;(D):w~=1.21,w~=O.Sl.~=-O.OS,s=O.l 

nx HO EQ AA CA SC SCF PCA 

(A) 0 0 1.0000 0.99 16 0.9915 0.9917 0.9920 0.9 925 0.9918 
0 1 15420 15159 1515s 15 161 1.5164 15190 1.5170 

0 2 2.0840 2.0308 2.0308 2.0311 2.0313 2.0364 2-0344 
1 0 2.4850 2.4188 2.4 184 2.4190 2.4194 2.42 14 2-4 194 

(B) 0 0 1.0000 0.9939 0.993s 0.9939 0.9941 - 0.9940 
0 1 1.6000 15809 15sos 1.5610 1.5612 I.5815 
0 2 2.2000 2.1612 2.1612 2.1615 2.1615 2.1630 

(C) 0 0 1.0000 0.9955 0.9953 0.9956 0.9955 0.9963 0.9956 
0 1 1.7000 1.6870 1.6869 l-6871 1.6S70 1.6695 1.6873 
0 2 2.4000 2.3750 2.375 1 2.3754 2.3750 - 2.3758 
1 0 23000 2.2781 2.2776 2-2783 2.2782 2.2800 2.2733 
1 1 3.0000 2.9583 2.9581 2.9589 29584 - 2.9593 

(D) 0 0 1.0000 0.9980 0.9978 0.99so 0.9978 - 0.9980 
0 1 1.9000 1.8944 1.6944 1.8947 1.8941 - 1.8947 
0 2 2.8000 2.7899 2.7903 2.7906 2.7896 - 2.7906 
1 0 2.1000 2.0890 2.0885 2.0894 2.0890 - 2.0694 

the variation theorem, the diagonally corrected adia- 
batic ground-state energy is an upper bound to the 
exact energy. Our AA and CA ground-state energies 
should therefore bracket the EQ value, as indeed they 
do _ The numerical CA eigenvalues are noticeably dif- 
ferent from the PCA results, especially for case (A) 
(low a,,)_ The CA (and PCA) results are consistently 

more accurate than the SCF values. This is expected, 
since the adiabatic wavefunction, in which the x mo- 
tion changes locally according to the value ofy, is much 
more flexible than an SCF wavefunction, in which in- 
dividual modes are defined by averages over the other 
degrees of freedom. 

Uncorrected adiabatic channel energies e,(y) + 

%y2 + Xrly3 for + even are shown in fg_ 1 for case 

(CL c+ = 1.3,w,,=0.7,h=-O.l,~=O_l.Ataround 
y = 8.5, the effective force constant in the x direction 

vanishes, leading to a rapid drop in the channel energies 
beyond that point. Well below the dissociation thresh- 
old&‘= 11.5 units, however, the channel energies are 
smoothly varying and fairly parallel, so that the AA is 
expected to be a useful approximation there. 

Fig. 1. Adiabatic channel energies E@) + $wjy* + Any3 ver- 

susy for case (C): w$ = 1.69, w$ = 0.49, A = -0.1, n = 0.0. 

~=0,2,4,6,8,10channelsshown. 
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T.ible Z 
Comparison of EQ. AA, CA. SC. SCF and PCA (see table 1) ei8envalues with variation in coupling constant h. G.J~ = 1.69. W$ = 
0.49, h = -_11 

- 

A EQ AA CA SC SCF PCA 

“x=o.ri =o \’ -0.06 0.9988 0.9987 0.9988 0.9987 0.9991 0.9988 
-0.08 0.9975 0.9974 0.9975 0.9975 0.9980 0.9975 
-0.10 0.9955 0.9953 0.9956 0.9955 0.9963 0.9956 
-0.12 0.9926 0.9923 0.9927 0.9927 0.9937 0.9927 
-0.14 0.9884 0.9880 0.9885 0.9889 0.9899 0.9887 
-0.16 0.9826 0.9820 0.9827 0.9836 0.9846 0.9833 
-0.18 0.9743 0.9735 0.9745 0.9764 0.9771 0.976 1 
-0.20 0.9621 0.9609 0.963 1 0.9667 0.966 1 0.9668 

f2-v = 0. “,’ = 1 -0.06 1.6970 1.6970 1.6971 1.6970 1.6979 1.6971 
-0.08 1.6933 1.6933 1.6934 1.6933 1.6949 1.6934 
-0.10 1.6870 1.6869 1.6871 1.6870 1.6895 1.6873 
-0.12 1.6769 1.6768 1.6772 1.6770 1.6807 1.6777 
-0.14 1.6612 1.6610 1.6616 1.6617 1.6667 1.6634 
-0.16 1.6370 1.6366 1.6376 1.6382 1.6449 1.6430 
-0.18 1.5980 15966 1.5988 1.6010 1.6094 1.6149 

-006 2.2932 -_- ’ 7930 2.2932 2.2932 2.2936 2.2932 
-0.08 _._ ’ ‘870 2.2866 -__ 7 7871 2.2870 2.2881 2.287 1 
-0.10 __- ’ ‘781 2.2776 2.2783 2.2782 2.2800 2.2783 
-0.12 2.2658 2-2650 2.266 1 2.266 1 2.2688 2.2663 
-0.14 2.2490 -_- ’ ‘477 2.2494 2.2496 2.2536 2.2502 
-0.16 2.1157 2.1’40 2.1263 2.2268 2.2327 2.2288 

The results in table 2 confirm the points made above 
For large coupling constants h. the PCA energies [21] 
differ considerably from the CA values_ 

Table 3 presents a more extensive set of AA and 
CA eigenvalues for case (C), together with the EQ 
values of Noid (quoted in ref. [6]) and the SC Birkhoff 
normal form values of Swimm and Delos [6], for ?zsu 
= O-3. The accuracy of the CA energies is quite reas- 
onable in comparison with rhe SC results, especially 
at high energies and larger values of px__ Apart from a 
reversal of the (0, 13) and (6,2) levels, the AA un- 
amb@rously predicts the ordering of the EQ levels 
assigned in ref. [6] _ This indicates that there is con- 
siderable regularity in the quantum spectrum for this 
Tstem, even at high energies. 

There is a slight upward drift of the AA and CA 
values relative to the EQ energieswith increasing energy. 
Allowing for non-adiabatic interactions between 
channels would presumably result in a lowering of the 
AA and CA eigenvalues for excited states (cf. the per- 
turbative non-adiabatic levels in ref. [21]). 
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4. Conclusions 

Our numerical work has shown that the adiabatic 
approximation provides a useful description of the 
quantum states of two nondegenerate coupled oscil- 
lators with the GHH hamiltonian. We have taken the 
conventional approach and solved for the “fast” mo- 
tion at fured values of the “slow” variable. However, 
earlier work on a different system showed that the 
AA was valid over a surprisingly wide range of fre- 
quency ratios [26] _ It would therefore be of interest 
to investigate the applicability of the present method 
over a similarly wide range of ratios w_Jw,, . The ap- 
plication of the AA to coupled oscillator systems 
with more than two dimensions also remains to be 
tried [20] _ 

The AA can also be made the basis of an approximate 
inversion procedure [20], which, for non-degenerate 
systems at least, is likely to be more accurate than 
one based on the SC SCF method [27]. 
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Table 3 
Comparison of AA and CA eigenvalues (see table 1) with EQvalues of Noid (quoted in ref_ 161) and SC values of Swimm a&l 
Delos [6] ~2 = 1.69. w$ = 0.49, h = -0.1, 9 = 0.1 

nx ny EQ AA CA SC nx “y EQ AA CA SC 

0 

0 
0 
0 
0 
0 
0 
0 
0 

0 

0 
0 

0 
0 
0 

0 
0 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0 0.9955 0.9953 0.9956 0.9955 
1 1.6870 1.6869 1.6872 1.6870 
2 2.3750 23751 23754 23750 
3 3.0596 3.0598 3.0601 3.0595 
4 3.7404 3.7408 3.7412 3.7404 
5 4.4 176 4.4182 4.4 186 4.4176 
6 5.0909 5.0917 5.0922 5.0910 
7 5.7601 5.7613 5.7619 5.7605 
8 64253 6.4268 6.4275 6.4260 

9 7.0861 7.0881 7 -0889 7.0873 
10 7.7423 7.7449 7.7459 7.7445 
11 8.3939 8.3972 8.3985 8.3973 
12 9.0403 9.0445 9.0467 9.0456 
13 9.6812 9.6865 9.6911 9.6894 
14 10.3161 10.3229 10.333 1 103285 
15 10.9439 10.9539 10.9754 109627 
16 11.5324 11.5824 11.6203 115902 

0 2.2781 2.2776 2.2783 2.2782 
1 2.9584 2.9581 2.9589 2.9584 
2 3.6347 3.6349 3.6358 3.6348 
3 4.3069 43076 4.3086 4307 1 
4 49749 4.9762 49773 4.9753 
5 5.6385 5.6405 5.6418 5.6393 
6 6.2975 6.3002 6.3017 6.2989 
7 6.9515 6.9552 6.9570 6.9540 
8 7 -6003 7.6053 7.6075 7.6044 
9 8.2435 8.2499 82528 8.2500 

10 8.8805 8.8888 8.8928 8.8908 
11 95108 9.5212 95280 95264 
12 10.1332 10.1462 IO_1600 10.1568 
13 10.7463 10.7625 10.7932 10.7819 
14 11.3484 11.3703 11.4336 11.4014 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

4 
4 
4 
4 
4 
4 
4 
4 
4 

0 3.5479 3.5464 3.5482 3.5480 
1 42162 42152 42171 42164 
2 4.8799 4.8796 4.8818 4.8803 
3 55390 51393 5541s 5-5397 
4 6.1931 6.1943 6-1971 6.1944 
5 6.8419 6.8441 6.8474 68443 
6 7.4850 7.4885 7.4925 7.4891 
7 8.1220 8.1270 8.1319 8.1288 
8 8.7524 8.7591 8.7655 8.7632 
9 9.3752 9.3841 9.393 1 9.3921 

10 99895 10.0006 10.0157 10.0152 
11 105937 10.6069 10.6369 10.6326 
12 11.1856 11.2003 112645 11.2439 

0 4.8043 4.8011 4.8045 4.8045 
1 5.4597 5.4571 5.4610 5.4601 
2 6.1099 6.1080 6.1124 6.1108 
3 6.7546 6.7536 6.7586 6.7564 
4 7.3935 7.3934 7.3993 7.3967 
5 8.0259 8.0270 8.034 1 8.03 15 
6 8-65 13 8.6539 8.6625 8.6607 
7 93689 9.273 1 9.2843 9.2840 
8 9.8776 9.8836 9.8995 99012 
9 10.4758 10.4834 105094 105121 

10 11.0612 11.0688 11.1119 11.1166 

0 6 -0463 6.0406 6.0465 6.0468 
1 6.6878 6.6828 6.6894 6.6889 
2 7.3234 7.3 190 7.3266 7.3255 
3 7.9524 7.9488 79577 7.9564 
4 85743 85715 85822 8.5814 
5 9.1882 9.1865 9.1997 92001 
6 9.7932 9.7926 9.8097 9.8125 
7 10.3877 10.3881 10.4122 10_4183 
8 109700 109699 11.0092 11.0172 
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