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ABSTRACT

We study the classical-quantum correspondence for a collinear model of the Helium atom.

The quantum spectrum of doubly-excited quasibound states is calculated using the stabiliza-

tion method, and analyzed in terms of unstable classical periodic orbits using the Gutzwiller

semiclassical trace formula. Oscillations in the density of states associated with modes of

asymmetric stretch character are found to be prominent, whereas those due to the Wannier

ridge (symmetric stretch) periodic orbit are absent.

INTRODUCTION

The Helium atom has long served as a focus for investigations of the nonseparable quantum

mechanical three-body problem. There is currently much interest, both experimental and

theoretical, in the properties of multiply-excited states of few-electron systems [1] “planetary

atom” [2, 3]). In doubly-excited states of He and H− in which both electrons have comparable

principal quantum numbers, correlation renders traditional independent-particle descriptions
1Report published in Proceedings of the Adriatico Research Conference on Quantum Chaos, edited by H.
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paper, rejected by Physical Review Letters, presented the first application of Gutzwiller periodic orbit theory

to the analysis of doubly-excited states of 2-electron systems. The semiclassical periodic orbit analysis of the
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of the then-prevailing dogma associating intrashell doubly-excited states with excitation of the symmetric stretch

(r1 = r2) Wannier ridge mode. Further details of both the classical mechanical study of the 3-body problem and

the quantum calculations mentioned in the paper are given in the unpublished Cornell Ph.D. thesis of J-H. Kim
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cycle expansion for the Helium atom”, J. Phys. B 24, L413-L420 (1991); G. Tanner, K. Richter and J. M. Rost,
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497-544 (2000).
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inadequate, and these states have been analyzed using a variety of novel approaches [1]. Thresh-

old laws governing the energy dependence of cross sections for two-electron ionization following

electron impact or photoionization reflect the profound effects of correlation on the relative

motion of slow electrons [4].

On general correspondence principle grounds, planetary atoms would appear to be good

candidates for semiclassical analysis due to the large quantum numbers involved [3]. The

problem of semiclassical quantization of multielectron systems was however left unsolved in

the Old Quantum Theory, and the classical-quantum correspondence for few-electron systems

is not fully understood even today. Although much work has been done on the semiclassical

mechanics of two-electron systems [5, 6], an understanding of the nature of “ridge” states [1],

associated in an as yet poorly understood sense with classically unstable motions, remains

elusive. Attempts to calculate energies of doubly-excited states of He by EBK quantization of

mechanical models derived from the Old Quantum Theory have not been successful [6]. Rigidly

rotating configurations of the classical He atom have been found [7], but the significance of

these periodic orbits for the spectrum of quasibound states is not yet clear. The well-known

instability of the classical He atom with respect to autoionization makes the study of its phase

space structure a difficult task.

For integrable systems, quantum energy levels can be calculated to good accuracy by im-

posing EBK quantization conditions on classical invariant tori [8]. Over the past few years,

there have been major advances in the semiclassical theory of chaotic systems, for which in-

variant tori do not exist. Gutzwiller [9] has expressed the quantum density of states n(E) as

the sum of a smooth background term n̄(E) plus an oscillating term nosc(E), where the latter

is given in terms of a sum over all classical periodic orbits (pos):

nosc(E) =
∑

r

∑

j

Arj(E) cos
{

j

[
2πSr(E)

h̄
− π

2
αr

]}
. (1)

The index r labels the primitive pos and the index j labels repetitions of the primitive pos.

Sr(E) is the action of the po r divided by 2π, αr is a generalized Maslov index, and the

amplitude factor Arj(E) depends on the period and stability properties of the po r [9]. Eq.

(1) is valid for determining the semiclassical spectrum of quasi bound autoionizing resonances

as well as bound states [10].

The po theory was originally applied to calculate the lowest few eigenvalues of the anisotropic

Kepler problem [9]. For large enough mass anisotropies, there are no invariant tori, and a com-

plete symbolic coding of all (isolated, unstable) pos by periodic binary sequences is possible

[9]. The slow convergence (or lack thereof) of expression (1) for real values of the energy E in
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general precludes the calculation of individual eigenvalues [11]. Nevertheless, the Gutzwiller

formula determines the density of states smoothed to a finite resolution ∆E in terms of a sum

over all classical pos with periods up to T ∼ h̄/∆E. Undulations in calculated and observed

spectra of the H-atom in a magnetic field have been interpreted quantitatively in terms of

closed orbits [12, 13]; in particular, the Fourier transform of the absorption spectrum at con-

stant scaled energy consists of a set of discrete peaks that can be put in 1:1 correspondence

with classical pos [12].

THE MODEL HAMILTONIAN

We use the Gutzwiller formula to investigate the classical-quantum correspondence for doubly-

excited states of a model Hamiltonian describing two electrons in the field of an infinitely heavy

nucleus of charge Z,

H =
p2
1
2

+
p2
2
2

− Z

r1
− Z

r2
+

1
r1 + r2

, (2)

where 0 ≤ r1, r2 ≤ ∞. Only the radial (stretching) degrees of freedom are included. The

relative angular (bending) motion is suppressed (θ12 = π), and the total angular momentum

set equal to zero. This system has previously been studied classically by Watanabe [14] (also

[15, 16]).

The equations of motion are singular, due to the possibility of either binary (r1 or r2 → 0)

or triple (both r1, r2 → 0) collisions, and must be regularized for accurate trajectory inte-

gration [17]. The 3-body Coulomb potential is homogeneous of degree minus one, so that it

is only necessary to study the phase space structure at one energy (strictly, at one negative,

one positive, and at zero energy, where E = 0 corresponds to all three particles at infinite

separation), as trajectories at different energies can be obtained by appropriate scaling [3]. In

particular, po initial conditions, actions and periods all scale in known fashion with energy.

(Oscillator systems with homogeneous potentials have been studied for just this reason [18].)

If the action of po r at energy E = −1 is Sr(−1), the action of the scaled po at negative energy

E is (−E)−1/2Sr(−1), so that the natural energy variable is the scaled energy ε = (−E)−1/2.

The po sum for nosc(ε) becomes

nosc(ε) =
∑

r

∑

j

Arj(ε) cos
{

j

[
2πεSr(−1)

h̄
− π

2
αr

]}
(3)

so that the power spectrum of the density of states nosc will have peaks at action values Sr(−1).

We have studied the classical dynamics for Z = 2 at energy E = −1. The collinear He

atom is highly chaotic, and we have been unable to find any bound quasiperiodic trajectories

(invariant tori) or stable pos. Phase points lie with unit probability on scattering trajectories,
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and ionize to give He+ + e− for t → ±∞. (At negative total energy, double ionization is not

possible.) As the classical dynamics of collinear He is essentially the same at all energies, it

follows that there are no quasiperiodic trajectories corresponding to the quantum mechanical

bound states (those lying below the first ionization threshold at E = −2.0). There exists

however a measure zero set of bound trajectories, composed of isolated unstable pos, associated

homoclinic and heteroclinic orbits, and bound aperiodic orbits [10]. Some pos (all unstable) for

collinear He are shown in Fig. 1. The po associated with the Wannier ridge is the symmetric

stretch orbit S1 with r1 = r2 (Fig. 1(a)) This orbit begins and ends in a triple collision, and is

very unstable (see below). A small asymmetric stretch component of the motion will in general

result in ionization.

Enumeration of all pos and calculation of their actions, periods, and instability exponents

would enable the semiclassical density of bound states or quasibound resonances to be cal-

culated via Eq. (3), thereby achieving a semiclassical quantization of the (collinear) Helium

atom. For the few chaotic systems for which this program has actually been carried through,

either a complete symbolic organization of the pos has been available [9, 19] or only a small

number of pos has been used [20]. It has recently been shown that a complete binary code

exists for the pos of collinear He [21].

Much insight into the classical-quantum correspondence for chaotic systems has neverthe-

less been gained by using the Gutzwiller formula “in reverse” to interpret oscillatory structure

in experimental and theoretical spectra and densities of states [12, 13, 18]. We shall follow this

procedure here by analyzing the theoretical density of doubly-excited states for collinear He in

terms of classical pos using the Gutzwiller formula Eq. (3). The 1-dimensional (l = 0) H-atom

has been used as a model in the quantum mechanical theory of the microwave ionization of

Rydberg states [22]. The quantum Hamiltonian for collinear He, obtained by setting

1
2
p2

i → −1
2

d2

dr2
i

(4)

in Eq. (2) (h̄ = 1), is equivalent to that for two 1-d He ions coupled by the interelectronic

repulsion, and has been diagonalized in a spatially symmetric (singlet) direct product basis

of 2-electron functions formed from a complete denumerable orthonormal set of single-particle

states [22]

φν
n(r) =

2Zr

ν

[
2Z

νn(n + 1)

]1/2

L
(2)
n−1(ρ)e−ρ/2, n = 1, 2, . . . , (5)

where the scaled radius ρ = 2Zr/ν. The scale parameter ν determines the character of the

single-particle basis. A subset of functions {φν
n, n = 1, . . . , N > ν} is appropriate for describing

single-particle states with principal quantum numbers ∼ ν.
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To calculate the positions of highly excited quasibound doubly-excited states of collinear

He, we use the stabilization method [23]. The Hamiltonian is diagonalized with a fixed basis

size for a large number of values of the parameter ν, and the eigenvalues examined as a function

of ν. The physically significant eigenvalues are those that are stable with respect to variation

of ν. Rather than extracting individual eigenvalues directly from the stabilization graph, we

produce a smoothed spectrum by superimposing the eigenvalue spectra at different ν values

with a Gaussian weighting given to every eigenvalue. The stable eigenvalues associated with

quasibound states then emerge as peaks above a smooth background, as seen in Fig. 2, which

is obtained with a basis of 1830 functions (N = 60) and 400 ν values in the range 20 to 45,

and covers an energy range corresponding roughly to doubly excited states (n, n′ = n) with

principal quantum number n ranging from 20 to 45.

PERIODIC ORBIT ANALYSIS OF THE DENSITY OF STATES

The power spectrum obtained by Fourier transformation with respect to ε of the segment of

the smoothed quantum density of quasibound states of Fig. 2 is shown in Fig. 3, and consists

of a series of sharp peaks. The action values of the peaks in Fig. 3 are listed in Table I. Each

peak in the power spectrum up to S/h̄ = 12.0 (as far as we have gone) can be assigned to

at least one primitive po or to a 2-fold repetition of a primitive po shown in Fig. 1. Peaks

associated with pos symmetric with respect to r1 ↔ r2 appear at half of the action of the

complete po, except for S1 [24]. The peak with the smallest action (1.83) corresponds to the

po H1, which is a hyperangular mode [14] or “rpo” [25] involving asymmetric stretching motion

of the two electrons. Other prominent peaks correspond to pos with significant asymmetric

stretch character (for example, the peak at S/h̄ = 9.06 corresponding to the po P2 of Fig. l(d).

The action of the Wannier or symmetric stretch mode S1 is 2× (Z − 0.25) = 3.50. There is no

peak at the action of this po in Fig. 3. Our computed approximation to the density of doubly-

excited quasibound states therefore shows no oscillations associated with the po corresponding

to motion along the Wannier ridge, and no evidence for sequences of doubly-excited levels

described by quantization of the Wannier ridge motion [26].

We have found a number of closed orbits in addition to the ridge po S1 that begin and end

in triple collision. There are no peaks in the power spectrum corresponding to these pos.

DISCUSSION AND CONCLUSIONS

The absence of a peak corresponding to the po S1 in the power spectrum of the density of

states may be understood in terms of its instability relative to, for example, H1. As noted by
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Watanabe, H1 is much less unstable (“quasistabl”) than S1 [14]. A quantitative measure of po

instability is the characteristic exponent λ. The negligible magnitude of the peak in the power

spectrum of the density of states corresponding to S1 with respect to that corresponding to H1

is a consequence of the exponential decrease of the amplitudes Arj of Eq. (1) and (3) with λ

[9]. The lack of influence of S1 on the density of states may be understood physically in terms

of the time evolution of wavepackets, initially localized at r1 = r2, launched along the pos S1

and H1, respectively. In the semiclassical limit, a wavepacket set off along a classical po will

at short times spread at a rate determined by the corresponding classical instability exponent

λ [27]. For the wavepacket set off along S1, spreading will be very rapid and recurrences very

weak, whereas that set off along H1 will spread less rapidly and exhibit more pronounced

recurrences. The rapid decay of recurrences for the wavepacket moving along the po S1 means

that the amplitude of the associated oscillations in the density of states will be small [27],

whereas the stronger recurrences associated with the po H1 imply a more pronounced influence

on the density of states.

Richter and Wintgen [16] have very recently calculated λ for the Wannier mode in planar

He. They find the remarkable result that the characteristic exponent of the Wannier mode

S1 in the J = 0 (collinear) limit is infinite. This fact implies that, in the semiclassical limit,

oscillations associated with the Wannier po are rigorously absent from the density of states.

Further work on doubly-excited states along the lines initiated here is clearly required.

In addition to detailed examination of wavefunctions for collinear He (currently in progress),

our analysis must obviously be extended to 3-dimensional Helium. In this connection, it is

interesting to note that the intrashell doubly-excited (n = n′) 1Se, v = 0 levels tabulated by

Molina [28] for n = 3 − 6 are fit very well by a double-Rydberg formula [28]

Em = − ζ2
eff

(m − µ)2
, (6)

where ζeff is an effective nuclear charge, µ a two-electron quantum defect and m an integer,

with ζeff = 1.823, µ = −0.0642. The value of ζeff is very close to that expected for a sequence of

states with energies determined by Bohr-Sommerfeld quantization of the unstable hyperangular

mode [29]. An analogous result also holds for H−, where ζeff = 0.825 [30], while the action of

the po H1 is 0.827 [21].
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Table 1: Comparison of actions of peaks in the power spectrum of Figure 3 with those of

classical unstable pos of collinear He at E = −1. Each peak in the power spectrum can readily

be assigned to one or more primitive pos or to 2-fold repetitions of primitive pos (denoted by

superscript 2).

Peak action Periodic orbit assignment

1.83 H1 (1.83)

3.64 H2 (3.62), H2
1 (3.66)

5.37 A1 (5.40), H3 (5.33)

7.03 A2 (7.05), H4 (6.97)

7.29 P1 (7.26), H2
2 (7.24)

8.63 A3 (8.56), H5 (8.57)

9.05 P2 (9.08)

10.20 A4 (10.22), H6 (10.14)

10.61 P3 (10.58), H2
3 (10.66)

10.91 P4 (10.91)

11.76 A5 (11.77), H7 (11.69)
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Figure 1: Periodic orbits for collinear He at E = −1. (a) The ridge po S1 and the sequence

H1 – H7. For clarity only half of each symmetrical po Hi is shown. (b) The sequence of pos

A1 – A5. (c) The po P1. (d) The po P2. P3 and P4 (not shown) are similar in character to H2

and P1, respectively.
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Figure 2: The smoothed approximate quantum density of quasibound states obtained using

the stabilization method.
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Figure 3: The power spectrum of the density of states of Figure 2.
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